Hugo Alexander de la Cruz Cancino
Formação:
-
Instituto Nacional de Matemática Pura e Aplicada
| Pós-Doutorado | 2011 - 2013
-
Instituto Nacional de Matemática Pura e Aplicada
| Pós-Doutorado | 2009 - 2011
-
Mittag-Leffler Institute
| Pós-Doutorado | 2007 - 2007
-
Universidade de Havana
Matemática | Doutorado | 2002 - 2007
-
Universidad del Oriente Cuba
Matemáticas | Graduação | 1993 - 1998
Laboratórios:
Nenhum laboratório cadastrado
Nuvens de Palavras:
Artigos:
(80.00% artigos com DOI)
| Titulo | DOI | Ano |
|---|---|---|
| A Magnus-based integrator for Brownian parametric semi-linear oscillators | 10.1016/j.amc.2024.128610 | 2024 |
| A simplified weak simulation method for the probabilistic response analysis of nonlinear random vibration problems | 10.1016/j.apnum.2022.09.001 | 2023 |
| Pathwise methods for the integration of a stochastic SVIR model | 10.1002/mma.9648 | 2023 |
| An explicit numerical scheme for the computer simulation of the stochastic transport equation | 10.1016/j.cnsns.2022.106378 | 2022 |
| Steady-state density preserving method for stochastic mechanical systems | 10.1140/epjp/s13360-021-01770-9 | 2021 |
| Exact pathwise simulation of multi-dimensional Ornstein-Uhlenbeck processes | 10.1016/j.amc.2019.124734 | 2020 |
| Efficient computation of phi-functions in exponential integrators | 10.1016/j.cam.2020.112758 | 2020 |
| Stabilized explicit methods for the approximation of stochastic systems driven by small additive noises | 10.1016/j.chaos.2020.110195 | 2020 |
| On the oscillatory behavior of coupled stochastic harmonic oscillators driven by random forces | 10.1016/j.spl.2018.11.001 | 2019 |
| Locally Linearized methods for the simulation of stochastic oscillators driven by random forces | 10.1007/s10543-016-0620-2 | 2017 |
| Refinement to the velocity of convergence for Local Linearization schemes for deterministic, random and stochastic differential equations | 2016 | |
| Numerical integration of a random integral equation arising in the simulation of stochastic transport equations | 2014 | |
| Local Linearization-Runge-Kutta methods: A class of A-stable explicit integrators for dynamical systems | 10.1016/j.mcm.2012.08.011 | 2013 |
| Convergence rate of strong Local Linearization schemes for stochastic differential equations with additive noise | 10.1007/s10543-011-0360-2 | 2012 |
| High order local linearization methods: An approach for constructing A-stable explicit schemes for stochastic differential equations with additive noise | 10.1007/s10543-010-0272-6 | 2010 |
| A higher order local linearization method for solving ordinary differential equations | 10.1016/j.amc.2006.06.096 | 2007 |
| Numerical simulation of nonlinear dynamical systems driven by commutative noise | 10.1016/j.jcp.2007.05.024 | 2007 |
| Local Linearization-Runge Kutta (LLRK) Methods for Solving Ordinary Differential Equations | 2006 | |
| The Local Linearization Method for Numerical Integration of Random Differential Equations | 10.1007/s10543-005-2645-9 | 2005 |
| Aproximación de Ecuaciones Diferenciales Ordinarias por Métodos LL-Taylor | 2005 |
Eventos:
(29.17% eventos com DOI)
| Titulo | DOI | Ano |
|---|---|---|
| A numerical scheme with adaptive stepsize for Stochastic Differential Equations with additive noise | 10.5540/03.2023.010.01.0012 | 2023 |
| An explicit numerical method for random differential equations driven by diffusion-type noises | 10.5540/03.2018.006.01.0313 | 2018 |
| Numerical and Computational Analysis of models for Stochasti activity of neurons | 10.5540/03.2018.006.01.0461 | 2018 |
| A semi-analytic explicit integrator for stochastic differential equations driven by multidimensional linear multiplicative noise | 10.5540/03.2018.006.02.0246 | 2018 |
| A numerical method for the semilinear stochastic transport equation | 10.5540/03.2015.003.01.0309 | 2015 |
| Effective simulation of stochastic oscillators driven by random forces | 2015 | |
| A higher order and stable method for the numerical integration of Random Differential Equations | 10.5151/mathpro-cnmai-0023 | 2015 |
| A higher order and stable method for the numerical integration of RDEs | 2014 | |
| On the numerical integration of a random integral equation arising in the simulation of stochastic transport equations | 10.1063/1.4825986 | 2013 |
| Stabilized integrators for stochastic differential equations driven by small noise | 2012 | |
| Dynamical properties of explicit LL-Runge Kutta methods for ODEs | 2012 | |
| Long-time integration of Stochastic Differential Equations by exponential LL-based methods | 2011 | |
| Stabilized strong methods for stochastic differential equation driven by small noise | 2011 | |
| Solving stochastic differential equations through schemes with Random Absolute Stability | 2009 | |
| Método de Linealización Local con variante implicita para la solución de EDOs: Enfoque y resultados por simulación | 2009 | |
| An approach for constructing RA-stable high order explicit schemes for stochastic differential equations with additive noise | 2008 | |
| A new class of MS-stable methods for the approximation of stochastic differential equations | 2007 | |
| Approximation of SDEs through stable and higher order LL methods | 2006 | |
| Efficient Simulation of Stochastic Differential Equations. Implementation Issues | 2006 | |
| Approximation of Stochastic Differential Equations through Stable and Higher Order LL Methods | 2006 | |
| Local Linearization Runge-Kutta Methods for solving ODEs | 2006 | |
| Stabilizing approximations of Dynamical Systems driven for ODE's | 2006 | |
| Aproximación de Sistemas Dinámicos mediante métodos de Orden Superior | 2005 | |
| Métodos LL Taylor para la eficiente solución de EDOs | 2005 |