Bruno Coelho Cesar Mota
Instituição:
Universidade Federal do Rio de Janeiro
Centro:
Centro de Ciências Matemáticas e da Natureza
Unidade:
Instituto de Física
Departamento:
Departamento de Física Nuclear/I Fis
Formação:
-
Universidade Federal do Rio de Janeiro
| Pós-Doutorado | 2008 - 2013
-
Centro Brasileiro de Pesquisas Físicas
Física | Doutorado | 2001 - 2007
-
Universidade Federal de Minas Gerais
Física | Mestrado | 1999 - 2001
-
Universidade Federal de Minas Gerais
Física - Bacharelado | Graduação | 1996 - 1999
Laboratórios:
Nuvens de Palavras:
Artigos:
(90.00% artigos com DOI)
Titulo | DOI | Ano |
---|---|---|
Establishing a Baseline for Human Cortical Folding Morphological Variables: A Multisite Study | 10.3389/fnins.2022.897226 | 2022 |
Independent components of human brain morphology | 10.1016/j.neuroimage.2020.117546 | 2021 |
EEG dynamical network analysis method reveals the neural signature of visual-motor coordination | 10.1371/journal.pone.0231767 | 2020 |
Human cortical folding across regions within individual brains follows universal scaling law | 10.1038/s42003-019-0421-7 | 2019 |
White matter volume and white/gray matter ratio in mammalian species as a consequence of the universal scaling of cortical folding | 10.1073/pnas.1716956116 | 2019 |
The reliability of the isotropic fractionator method for counting total cells and neurons | 10.1016/j.jneumeth.2019.108392 | 2019 |
No relative expansion of the number of prefrontal neurons in primate and human evolution | 10.1073/pnas.1610178113 | 2016 |
Limits of the circles-in-the-sky searches in the determination of cosmic topology of nearly flat universes | 10.1103/PhysRevD.94.043501 | 2016 |
Universality in human cortical folding in health and disease | 10.1073/pnas.1610175113 | 2016 |
Cortical folding scales universally with surface area and thickness, not number of neurons | 10.1126/science.aaa9101 | 2015 |
All brains are made of this: a fundamental building block of brain matter with matching neuronal and glial masses | 10.3389/fnana.2014.00127 | 2014 |
Cellular scaling rules for the brain of Artiodactyla include a highly folded cortex with few neurons | 10.3389/fnana.2014.00128 | 2014 |
Different scaling of white matter volume, cortical connectivity, and gyrification across rodent and primate brains | 10.3389/fnana.2013.00003 | 2013 |
The human cerebral cortex is neither one nor many: neuronal distribution reveals two quantitatively different zones in the gray matter, three in the white matter, and explains local variations in cortical folding | 10.3389/fnana.2013.00028 | 2013 |
How the Cortex Gets Its Folds: An Inside-Out, Connectivity-Driven Model for the Scaling of Mammalian Cortical Folding | 10.3389/fnana.2012.00003 | 2012 |
What can the detection of a single pair of circles-in-the-sky tell us about the geometry and topology of the Universe? | 10.1103/PhysRevD.84.083507 | 2011 |
Connectivity-driven white matter scaling and folding in primate cerebral cortex | 10.1073/pnas.1012590107 | 2010 |
Circles-in-the-sky searches and observable cosmic topology in a flat universe | 10.1103/PhysRevD.81.103516 | 2010 |
Circles-in-the-sky searches and observable cosmic topology in the inflationary limit | 10.1103/PhysRevD.78.083521 | 2008 |
A Note on the large-angle anisotropies in the WMAP cut-sky maps | 2007 | |
Mapping the large-scale anisotropy in the WMAP data | 10.1051/0004-6361:20065585 | 2007 |
Supernovae observations and cosmic topology | 10.1051/0004-6361:20064928 | 2006 |
Detectability of cosmic topology in generalized Chaplygin gas models | 10.1051/0004-6361:20053255 | 2006 |
Cellular scaling rules for rodent brains | 10.1073/pnas.0604911103 | 2006 |
The Local shape of the Universe in the inflationary limit | 2005 | |
Relativistic effects of our galaxy's motion on circles-in-the-sky in CMB maps | 10.1088/0264-9381/22/11/005 | 2005 |
What do very nearly flat detectable cosmic topologies look like? | 10.1088/0264-9381/21/14/002 | 2004 |
Constraints on the detectability of cosmic topology from observational uncertainties | 10.1088/0264-9381/20/22/008 | 2003 |
Noise strength effects on the relaxation properties of weakly coupled Ginzburg-Landau models | 10.1103/physreve.65.017101 | 2001 |
O Oscilador Relativístico Forçado | 1999 |