Gerson Zaverucha
Instituição:
Universidade Federal do Rio de Janeiro
Centro:
Centro de Tecnologia
Unidade:
Coordenação dos Programas de Pós-Graduação de Engenharia
Departamento:
Programa de Engenharia de Sistemas/COPPE
Formação:
-
University of Wisconsin - Madison
| Pós-Doutorado | 1999 - 2000
-
Imperial College Of Science Technology And Medicine
Computer Science | Doutorado | 1985 - 1990
-
Rensselaer Polytechnic Institute
Master of Engineering (M.E.) in Electric Power Systems | Mestrado Profissional | 1981 - 1982
-
Universidade Federal da Bahia
Engenharia Eletrica | Graduação | 1977 - 1981
Laboratórios:
Nuvens de Palavras:
Artigos:
(82.61% artigos com DOI)
| Titulo | DOI | Ano |
|---|---|---|
| Word embeddings-based transfer learning for boosted relational dependency networks | 10.1007/s10994-023-06404-y | 2024 |
| A Statistical Relational Learning Approach Towards Products, Software Vulnerabilities and Exploits | 10.1109/TNSM.2023.3234554 | 2023 |
| Transfer learning by mapping and revising boosted relational dependency networks | 10.1007/s10994-020-05871-x | 2020 |
| Online probabilistic theory revision from examples with ProPPR | 10.1007/s10994-019-05798-y | 2019 |
| Revising the Structure of Bayesian Network Classifiers in the Presence of Missing Data | 10.1016/j.ins.2018.02.011 | 2018 |
| On the formal characterization of the FORTE_MBC theory revision operators | 10.1093/logcom/exx015 | 2017 |
| On the use of stochastic local search techniques to revise first-order logic theories from examples | 10.1007/s10994-016-5595-3 | 2017 |
| Improvement in Protein Domain Identification Is Reached by Breaking Consensus, with the Agreement of Many Profiles and Domain Co-occurrence | 10.1371/journal.pcbi.1005038 | 2016 |
| Evaluation and improvements of clustering algorithms for detecting remote homologous protein families | 10.1186/s12859-014-0445-4 | 2015 |
| Guest editors? introduction: special issue on Inductive Logic Programming and on Multi-Relational Learning | 10.1007/s10994-015-5514-z | 2015 |
| A multi-objective optimization approach accurately resolves protein domain architectures | 10.1093/bioinformatics/btv582 | 2015 |
| Fast relational learning using bottom clause propositionalization with artificial neural networks | 10.1007/s10994-013-5392-1 | 2014 |
| A discriminative method for family-based protein remote homology detection that combines inductive logic programming and propositional models | 10.1186/1471-2105-12-83 | 2011 |
| Applying REC analysis to ensembles of particle filters | 10.1007/s00521-008-0199-x | 2009 |
| Using the bottom clause and mode declarations in FOL theory revision from examples | 10.1007/s10994-009-5116-8 | 2009 |
| Improving Model Construction of Profile HMMs for Remote Homology Detection Through Structural Alignment | 10.1186/1471-2105-8-435 | 2007 |
| A Distribution Design Methodology for Object DBMS | 10.1023/B:DAPD.0000026268.04288.b9 | 2004 |
| Fuzzy Bayes and Fuzzy Markov Predictors | 2003 | |
| The Connectionist Inductive Learning and Logic Programming System | 10.1023/A:1008328630915 | 1999 |
| Recognizing Classes of Logic Programs | 1997 | |
| A Computational Approach to Relevant Logics | 1995 | |
| A Prioritized Contextual Default Logic: Curing Anomalous Extensions with a Simple Abnormality Default Theory | 1994 | |
| RELEVANT LOGIC AS A BASIS FOR PARACONSISTENT EPISTEMIC LOGICS | 10.1080/11663081.1992.10510783 | 1992 |
Eventos:
(34.92% eventos com DOI)
| Titulo | DOI | Ano |
|---|---|---|
| Combining word embeddings-based similarity measures for transfer learning across relational domains. | 2024 | |
| Select First, Transfer Later: Choosing Proper Datasets for Statistical Relational Transfer Learning | 2023 | |
| Transfer learning for boosted relational dependency networks through genetic algorithm | 2022 | |
| Mapping across relational domains for transfer learning with word embeddings-based similarity | 2022 | |
| Software Vulnerabilities, Products and Exploits: A Statistical Relational Learning Approach | 10.1109/CSR51186.2021.9527984 | 2021 |
| Weight Your Words: The Effect of Different Weighting Schemes on Wordification Performance | 2020 | |
| Passing the Brazilian OAB Exam using openWordnet-PT | 2018 | |
| Lightweight Neural Programming: The GRPU | 2018 | |
| Neural Relational Learning Through Semi-Propositionalization of Bottom Clauses | 2015 | |
| Relational Knowledge Extraction from Neural Networks | 2015 | |
| Aprendizado Local da Estrutura de Redes Bayesianas a partir de Dados Incompletos | 2013 | |
| Relational Knowledge Extraction from Attribute-Value Learners | 10.4230/OASIcs.ICCSW.2013.35 | 2013 |
| Learning Theories Using Estimation Distribution Algorithms and (Reduced) Bottom Clauses | 2012 | |
| Multi-instance learning using recurrent neural networks | 10.1109/IJCNN.2012.6252784 | 2012 |
| On the Effective Revision of (Bayesian) Logic Programs from Examples | 2012 | |
| Fast Relational Learning using Bottom Clauses in Neural Networks | 2012 | |
| Inductive Logic Programming through Estimation of Distribution Algorithm | 10.1109/CEC.2011.5949597 | 2011 |
| HTILDE-RT: Um algoritmo para aprender Árvores de Regressão Relacionais em grandes conjuntos de dados | 2011 | |
| Chess Revision: Acquiring the Rules of Chess Variants through FOL Theory Revision from Examples | 10.1007/978-3-642-13840-9 | 2010 |
| Algoritmo Genético Construtor de Modelo Probabilístico Aplicado à Programação em Lógica Indutiva | 2010 | |
| Revisão de Teorias Relacionais Probabilísticas através de Exemplos com Invenção de Predicados | 2010 | |
| HTILDE: Scaling Up Relational Decision Trees for Very Large Databases. | 2010 | |
| HTILDE: Scaling Up Relational Decision Trees For Very Large Databases | 10.1145/1529282.1529610 | 2009 |
| Chess Revision: Acquiring the Rules of Chess Variants through FOL Theory Revision from Examples | 2009 | |
| Revisando Redes Bayesianas através da Introdução de Variáveis Não-observadas | 2009 | |
| Chess Revision: Acquiring the Rules of Chess Variants through FOL Theory Revision from Examples | 2009 | |
| Revising First-order Logic Theories from Examples through Stochastic Local Search | 10.1007/978-3-540-78469-2_21 | 2008 |
| Using the Bottom Clause and Mode Declarations on FOL Theory Revision from Examples | 10.1007/978-3-540-85928-4 | 2008 |
| Combining Attributes to Improve the Performance of Naive Bayes for Regression | 10.1109/IJCNN.2008.4634253 | 2008 |
| Genetic Local Search for Rule Learning | 10.1145/1389095.1389372 | 2008 |
| Remote Homology Detection Through Discriminative Statistical Relational Learning | 2008 | |
| HTILDE: Tornando Árvores de Decisão Relacionais Escaláveis para Grandes Bases de Dados | 2008 | |
| Busca Direcionada a Modos na Adição de Antecedentes em Revisão de Teorias de Primeira-ordem a partir de Exemplos | 2008 | |
| Probabilistic First-order Theory Revision From Examples as a Challenge for Connectionism | 2008 | |
| Summary on the discussions on Neural Symbolic Integration | 2008 | |
| Aprendizado Genético de Regras de Decisão Utilizando a Codificação Natural e Novos Operadores de Recombinação. | 2008 | |
| Using the Bottom Clause and Mode Declarations on FOL Theory Revision from Examples | 2008 | |
| ILP through Propositionalization and Stochastic k-term DNF Learning | 10.1007/978-3-540-73847-3_35 | 2007 |
| Applying REC Analysis to Ensembles of Particle Filters | 10.1109/ijcnn.2007.4371326 | 2007 |
| Revisando Teorias Lógicas de Primeira-ordem a partir de Exemplos usando Busca Local Estocástica | 2007 | |
| Aprendizado Genético: Operadores de Crossover Naturais Aprimorados | 2007 | |
| Combinando Invenção de Predicados e Revisão de Teorias Probabilísticas de Primeira-ordem | 2007 | |
| Melhorando a Performance do Algoritmo Naive Bayes para Regressão Através da Combinação de Atributos | 2007 | |
| Improved Natural Crossover Operators in GBML | 10.1109/CEC.2007.4424739 | 2007 |
| Using Regression Error Characteristic Curves for Model Selection in Ensembles of Neural Networks | 2006 | |
| Applying REC Analysis to Ensembles of Sigma-Point Kalman Filters | 10.1007/11840930_16 | 2006 |
| PFORTE: Revising Probabilistic FOL Theories | 10.1007/11874850_48 | 2006 |
| Um Método Geral para Tornar Algoritmos Fuzzy de Aprendizado de Máquinas Escaláveis para Bases de Dados Arbitrariamente Grandes | 2006 | |
| Applying REC Analysis to Ensembles of Sigma-Point Kalman Filters | 2006 | |
| Comparative Evaluation of Approaches to Scale Up ILP | 2006 | |
| Combining Predicate Invention and Revision of Probabilistic FOL Theories | 2006 | |
| ILP through Propositionalization and Stochastic k-term DNF Learning | 2006 | |
| Uma Comparação de Métodos para Escalar a Programação em Lógica Indutiva para Grandes Bases de Dados | 2006 | |
| Aprendizado Genético e Codificação Natural: Novo Operador e Mecanismo de Seleção de Características | 2006 | |
| Genetic Based Machine Learning: Merging Pittsburgh and Michigan, an Implicit Feature Selection Mechanism and a New Crossover Operator | 2006 | |
| Boosting for Regression Using Regression Error Characteristic Curves | 2005 | |
| Fuzzy Multi-Hidden Markov Predictor in Electric Load Forecasting | 10.1109/IJCNN.2005.1556146 | 2005 |
| Probabilistic First-Order Theory Revision from Examples | 10.1007/11536314_18 | 2005 |
| Tornando Fuzzy C-Means Escalável para Bancos de Dados Arbitrariamente Grandes | 2005 | |
| Revisão de Teorias Probabilísticas de Primeira-Ordem | 2005 | |
| Further Results of Probabilistic First-Order Revision of Theories From Examples | 10.1145/1090193.1090203 | 2005 |
| A Partitioning Method Based on K-Means for Fuzzy Probabilistic Predictors | 2005 | |
| Um Método de Particionamento Baseado no K-Means para Preditores Probabilísticos Fuzzy | 2005 | |
| Comparação de Funções de Avaliação em Revisão de Teorias Probabilísticas de Primeira-Ordem | 2005 | |
| Fuzzy Hidden Markov Predictor in Electric Load Forecasting | 10.1109/IJCNN.2004.1379920 | 2004 |
| Search-based Class Discretization for Hidden Markov Model for Regression | 10.1007/b100195 | 2004 |
| Improving the Performance of the RISE Algorithm | 10.1007/b100704 | 2004 |
| A Hybrid System for Electric Load Forecasting Using Dynamic Bayesian Networks and Fuzzy Logic | 2004 | |
| A Partitioning Method for Fuzzy Probabilistic Predictors | 10.1007/b103766 | 2004 |
| SUNRISE: Improving the Performance of the RISE Algorithm | 2004 | |
| Revision of First-Order Bayesian Classifiers | 10.1007/3-540-36468-4_15 | 2003 |
| Applying Theory Revision to the Design of Distributed Databases | 10.1007/b13700 | 2003 |
| Fuzzy Markov Predictor in Multi-Step Electric Load Forecasting | 10.1109/IJCNN.2003.1224061 | 2003 |
| Hidden Markov Model for Regression in Electric Load Forecasting | 2003 | |
| SUNRISE: um algoritmo rápido de aprendizado multi-estratégia | 2003 | |
| Fuzzy Markov Predictor in Electric Load Forecasting | 10.1109/IJCNN.2002.1007520 | 2002 |
| A Framework for the Design of Distributed Databases | 2002 | |
| A Methodology and Algorithms for the Design of Distributed Databases using Theory Revision | 2002 | |
| Towards a Theory Revision Approach for the Vertical Fragmentation of Object Oriented Databases | 10.1007/3-540-36127-8_21 | 2002 |
| Fuzzy Markov Predictor with First and Second-Order Dependences | 10.1109/SBRN.2002.1181439 | 2002 |
| Learning Logic Programs with Neural Networks | 10.1007/3-540-44797-0_2 | 2001 |
| Aprendizado de Programas em Lógica Utilizando Redes Neurais | 2001 | |
| Relational Intersection as a Basis to Extend Neural Networks to Learn Relational Concepts | 2001 | |
| Fuzzy Bayes Predictor in Electric Load Forecasting | 10.1109/IJCNN.2001.938728 | 2001 |
| Theory Refinement of Bayesian Logic Programs | 2001 | |
| Theory Refinement of Bayesian Logic Programs | 2001 | |
| First Order Cascade ARTMAP | 2001 | |
| Towards a Hybrid Model of First-Order Theory Refinement | 10.1007/10719871_7 | 2000 |
| Object Oriented Design Expertise Reuse: an Approach Based on Heuristics, Design Patterns and Anti-Patterns | 10.1007/b75206 | 2000 |
| Horizontal Fragmentation in Object DBMS: New Issues and Performance Evaluation | 10.1109/PCCC.2000.830308 | 2000 |
| Uma Arquitetura de Suporte à Avaliaçao de Modelos Orientados a Objetos | 2000 | |
| Applying Bayesian Neural Networks to Electric Load Forecasting | 10.1109/ICONIP.1999.844023 | 1999 |
| Recurrent Neural Gas in Electric Load Forecasting | 10.1109/IJCNN.1999.836223 | 1999 |
| An Implementation of a Theorem Prover in Symmetric Neural Networks | 10.1109/IJCNN.1999.830827 | 1999 |
| Evaluation and Comparison of Different Architectures Using Elman Networks Applied to Electric Load Forecasting | 1999 | |
| On the Relations Between Acceptable Programs and Stratifiable Classes | 10.1007/10692710_15 | 1998 |
| A Penalty-Function Approach to Rule Extraction from Knowledge-Based Neural Networks | 1998 | |
| Inducing Relational Concepts with Neural Networks Via the LINUS System | 1998 | |
| Towards an Inductive Design of Distributed Object Oriented Database | 10.1109/COOPIS.1998.706197 | 1998 |
| Normal programs and Multiple Predicate Learning | 10.1007/BFb0027321 | 1998 |
| Issues in Knowledge Discovery in Databases | 1998 | |
| A Knowledge-Based Perspective of the Distributed Design of Object Oriented databases | 1998 | |
| Implementação de um Provador de Teoremas em Redes Neurais Simétricas | 1998 | |
| Previsão de Cargas Elétricas Usando Redes de Elman | 1998 | |
| LOGIC PROGRAMMING AND INDUCTIVE LEARNING IN ARTIFICIAL NEURAL NETWORKS | 1997 | |
| Applying the Connectionist Inductive Learning and Logic Programming System to Power System Diagnosis | 10.1109/ICNN.1997.611649 | 1997 |
| Extensões do CIL2P: Um Sistema Neural para Programação em Lógica e Aprendizado Indutivo | 1997 | |
| Modificando o Treinamento do CIL2P para Facilitar a Extração de Programas em Lógica | 1997 | |
| Aplicando Invenção de Predicados ao Aprendizado de Múltiplos Predicados | 1997 | |
| PROGRAMACAO EM LOGICA ESTENDIDA E APRENDIZADO INDUTIVO EM REDES NEURAIS | 1996 | |
| LOGICAL INFERENCE AND INDUCTIVE LEARNING IN ARTIFICIAL NEURAL NETWORKS | 1996 | |
| ON CUMULATIVE DEFAULT LOGIC WITH FILTERS | 1996 | |
| AN ARGUMENTATION-BASED SEMANTICS FOR DEFAULT LOGICS | 1996 | |
| AN INTEGRATION OF NEURAL NETWORKS AND NONMONOTONIC REASONING FOR POWER SYSTEMS DIAGNOSIS | 10.1109/ICNN.1995.487365 | 1995 |
| A GOAL-DIRECTED REASONING FOR SEMI-NORMAL DEFAULT THEORIES | 10.1007/BFb0034804 | 1995 |
| INFERENCIA LOGICA E APRENDIZADO AUTOMATICO EM REDES NEURAIS: UMA REPRESENTACAO INTEGRADA DO CONHECIMENTO | 1995 | |
| A COMPUTATIONAL APPROACH TO RELEVANT LOGICS | 1995 | |
| DIAGNOSE EM SISTEMAS DE POTENCIA UTILIZANDO SISTEMAS ESPECIALISTAS | 1995 | |
| SISTEMA HIBRIDO DE PROCESSAMENTO DE ALARMES PARA DIAGNOSE | 1995 | |
| A PRIORITIZED CONTEXTUAL DEFAULT LOGIC: CURING ANOMALOUS EXTENSIONS WITH A SIMPLE ABNORMALITY DEFAULT THEORY | 10.1007/3-540-58467-6_23 | 1994 |
| ARTIFICIAL NEURAL NETWORKS FOR POWER SYSTEMS DIAGNOSIS | 10.1109/ICNN.1994.374804 | 1994 |
| AN EXTENSION OF POOLES LOGICAL FRAMEWORK FOR DEFAULT REASONING TO MULTIPLE AGENTS | 1993 | |
| Uma Teoria de Prova Dirigida Por Objetivo Para Teorias Default Genéricas | 1993 | |
| LOGICAL FOUNDATIONS OF A MODAL DEFEASIBLE RELEVANT LOGIC OF BELIEF | 1992 | |
| A GOAL DIRECTED THEOREM PROVER FOR A MODAL DEFEASIBLE RELEVANT LOGIC | 1991 | |
| Método de Simulação de Cargas para o Cálculo de Potenciais e Campos Eletrostáticos | 1985 |