Paulo Verdasca Amorim
Instituição:
Universidade Federal do Rio de Janeiro
Centro:
Centro de Ciências Matemáticas e da Natureza
Unidade:
Instituto de Matemática
Departamento:
Departamento de Matemática/Mat
e-mail:
paulo@im.ufrj.br
Linkedin:
Google Scholar:
ORCID:
não disponível no Lattes
Formação:
-
Universidade de Lisboa
| Pós-Doutorado | 2008 - 2009
-
Université Pierre et Marie Curie
Matemática | Doutorado | 2004 - 2008
-
Universidade de Lisboa
Mestrado em Matemática | Mestrado | 2003 - 2005
-
Universidade de Lisboa
Matemática | Graduação | 1997 - 2002
Laboratórios:
Nenhum laboratório cadastrado
Nuvens de Palavras:
Artigos:
(100.00% artigos com DOI)
Titulo | DOI | Ano |
---|---|---|
Modeling disease awareness and variable susceptibility with a structured epidemic model | 10.3934/nhm.20240012 | 2024 |
Global existence in a food chain model consisting of two competitive preys, one predator and chemotaxis | 10.1016/j.nonrwa.2022.103703 | 2023 |
On the motion of the director field of a nematic liquid crystal submitted to a magnetic field and a laser beam | 10.1007/s42985-023-00256-w | 2023 |
A chemotaxis predator-prey model with indirect pursuit-evasion dynamics and parabolic signal | 10.1016/j.jmaa.2021.125128 | 2021 |
Analysis of a model of self-propelled agents interacting through pheromone | 10.1088/1361-6544/ac149d | 2021 |
A nonlocal conservation law describing navigation processes | 10.1142/S0219891620500265 | 2020 |
Predator-Prey Interactions with Hunger Structure | 10.1137/19M1306786 | 2020 |
A reaction-diffusion predator-prey model with pursuit, evasion, and nonlocal sensing | 10.3934/mbe.2019257 | 2019 |
An ant navigation model based on Weber?s law | 10.1007/s00285-018-1298-7 | 2018 |
Analysis of a chemotaxis system modeling ant foraging | 10.1142/s0218202516500457 | 2016 |
Modeling ant foraging: A chemotaxis approach with pheromones and trail formation | 10.1016/j.jtbi.2015.08.026 | 2015 |
The obstacle - mass constraint problem for hyperbolic conservation laws. Solvability | 10.1016/j.anihpc.2015.11.003 | 2015 |
On the numerical integration of scalar nonlocal conservation laws | 10.1051/m2an/2014023 | 2014 |
The Linear Stability of Shock Waves for the Nonlinear Schrödinger-Inviscid Burgers System | 10.1007/s10884-012-9283-0 | 2013 |
Convergence of a numerical scheme for a coupled Schrödinger-KdV system | 10.1007/s13163-012-0097-8 | 2013 |
Convergence of a finite difference method for the KdV and modified KdV equations with $L^2$ data | 10.4171/PM/1924 | 2013 |
Young measure solutions for the wave equation with -Laplacian: Existence and blow-up | 10.1016/j.na.2013.07.010 | 2013 |
On a nonlocal hyperbolic conservation law arising from a gradient constraint problem | 10.1007/s00574-012-0028-9 | 2012 |
A nonlinear model describing a short wave-long wave interaction in a viscoelastic medium | 10.1090/s0033-569x-2012-01298-4 | 2012 |
A geometric approach to error estimates for conservation laws posed on a spacetime | 10.1016/j.na.2011.04.001 | 2011 |
CONVERGENCE OF NUMERICAL SCHEMES FOR SHORT WAVE LONG WAVE INTERACTION EQUATIONS | 10.1142/s0219891611002573 | 2011 |
Computing Gowdy spacetimes via spectral evolution in future and past directions | 10.1088/0264-9381/26/2/025007 | 2009 |
Convergence of semi-discrete approximations of Benney equations | 10.1016/j.crma.2009.08.002 | 2009 |
Finite volume schemes on Lorentzian manifolds | 10.4310/CMS.2008.v6.n4.a13 | 2008 |
Sharp estimates for periodic solutions to the Euler-Poisson-Darboux equation | 10.4171/PM/1819 | 2008 |
Hyperbolic Conservation Laws on Manifolds: Total Variation Estimates and the Finite Volume Method | 10.4310/MAA.2005.v12.n3.a6 | 2005 |
Eventos:
Nenhum evento cadastrado