Paulo Verdasca Amorim

Instituição:

Universidade Federal do Rio de Janeiro

Centro:

Centro de Ciências Matemáticas e da Natureza

Unidade:

Instituto de Matemática

Departamento:

Departamento de Matemática/Mat

e-mail:

paulo@im.ufrj.br

Linkedin:

Google Scholar:

ORCID:

não disponível no Lattes

Formação:
  • Universidade de Lisboa

    | Pós-Doutorado | 2008 - 2009
  • Université Pierre et Marie Curie

    Matemática | Doutorado | 2004 - 2008
  • Universidade de Lisboa

    Mestrado em Matemática | Mestrado | 2003 - 2005
  • Universidade de Lisboa

    Matemática | Graduação | 1997 - 2002
Laboratórios:
Nenhum laboratório cadastrado
Nuvens de Palavras:
Artigos:

(100.00% artigos com DOI)

Titulo DOI Ano
Modeling disease awareness and variable susceptibility with a structured epidemic model 10.3934/nhm.20240012 2024
Global existence in a food chain model consisting of two competitive preys, one predator and chemotaxis 10.1016/j.nonrwa.2022.103703 2023
On the motion of the director field of a nematic liquid crystal submitted to a magnetic field and a laser beam 10.1007/s42985-023-00256-w 2023
A chemotaxis predator-prey model with indirect pursuit-evasion dynamics and parabolic signal 10.1016/j.jmaa.2021.125128 2021
Analysis of a model of self-propelled agents interacting through pheromone 10.1088/1361-6544/ac149d 2021
A nonlocal conservation law describing navigation processes 10.1142/S0219891620500265 2020
Predator-Prey Interactions with Hunger Structure 10.1137/19M1306786 2020
A reaction-diffusion predator-prey model with pursuit, evasion, and nonlocal sensing 10.3934/mbe.2019257 2019
An ant navigation model based on Weber?s law 10.1007/s00285-018-1298-7 2018
Analysis of a chemotaxis system modeling ant foraging 10.1142/s0218202516500457 2016
Modeling ant foraging: A chemotaxis approach with pheromones and trail formation 10.1016/j.jtbi.2015.08.026 2015
The obstacle - mass constraint problem for hyperbolic conservation laws. Solvability 10.1016/j.anihpc.2015.11.003 2015
On the numerical integration of scalar nonlocal conservation laws 10.1051/m2an/2014023 2014
The Linear Stability of Shock Waves for the Nonlinear Schrödinger-Inviscid Burgers System 10.1007/s10884-012-9283-0 2013
Convergence of a numerical scheme for a coupled Schrödinger-KdV system 10.1007/s13163-012-0097-8 2013
Convergence of a finite difference method for the KdV and modified KdV equations with $L^2$ data 10.4171/PM/1924 2013
Young measure solutions for the wave equation with -Laplacian: Existence and blow-up 10.1016/j.na.2013.07.010 2013
On a nonlocal hyperbolic conservation law arising from a gradient constraint problem 10.1007/s00574-012-0028-9 2012
A nonlinear model describing a short wave-long wave interaction in a viscoelastic medium 10.1090/s0033-569x-2012-01298-4 2012
A geometric approach to error estimates for conservation laws posed on a spacetime 10.1016/j.na.2011.04.001 2011
CONVERGENCE OF NUMERICAL SCHEMES FOR SHORT WAVE LONG WAVE INTERACTION EQUATIONS 10.1142/s0219891611002573 2011
Computing Gowdy spacetimes via spectral evolution in future and past directions 10.1088/0264-9381/26/2/025007 2009
Convergence of semi-discrete approximations of Benney equations 10.1016/j.crma.2009.08.002 2009
Finite volume schemes on Lorentzian manifolds 10.4310/CMS.2008.v6.n4.a13 2008
Sharp estimates for periodic solutions to the Euler-Poisson-Darboux equation 10.4171/PM/1819 2008
Hyperbolic Conservation Laws on Manifolds: Total Variation Estimates and the Finite Volume Method 10.4310/MAA.2005.v12.n3.a6 2005
Eventos:
Nenhum evento cadastrado
Publicações:
Minha Rede: